Calculis

Probabilité Loi Normale

Rechercher un outil (en entrant un mot clé):

Calculer : Arrangement Anp - Combinaison Cnp - Loi Binomiale - Loi Normale

Calculer la probabilité d'une Loi Normale

 

La variable aléatoire X suit la Loi Normale de paramètres µ et σ si sa loi de densité est donnée par la fonction suivante :

loi normale

Propriétés :

Soit X une variable aléatoire suivant la loi normale de paramètres µ et σ.

- Son espérance est : E (X) = µ

- Sa variance est : V (X) = σ2

- Son écart-type est : σ (X) = σ

 



L'outil calcule les valeurs de P( X ≤ a ) et P( a ≤ X ≤ b ).

Loi Normale N(0,1) centrée réduite

P(−1 ≤ X ≤ 1) = 0.683

 

P(−2 ≤ X ≤ 2) = 0.954

 

P(−3 ≤ X ≤ 3) = 0.997

On a aussi :

P(−1.96 ≤ X ≤ 1.96) = 0, 95

P(−2.58 ≤ X ≤ 2.58) = 0, 99

Loi Normale N(µ,σ)

Exemple avec N(2,3):

P(µ − σ ≤ X ≤ µ + σ) = 0.68

P(µ − 2σ ≤ X ≤ µ + 2σ) = 0.95

 

on a aussi :

P(µ − 3σ ≤ X ≤ µ + 3σ) = 0.997

Outils du moment
Impôt 2019 Escalier Calcul Heure Dosage Béton Emprunter Moyenne de notes Cout trajet Bois Chomage Chauffage CoVoiturage Pourcentage TaXe Echelle Emprunt Taille Pneu Fériés 2019 Fioul CO2 Calcul Mensualité

Coût Carburant

Coût Carburant

Dosage béton

Calculer le dosage du béton
D'autres Outils
brut net coût carburant béton calcul aire masse molaire moyenne pondérée calcul volume chômage consommation carburant mensualité et TEG conversion unités cuve fioul escalier hypoténuse mur nombre de jours pente pneu pourcentage puissance radiateur résistance thermique tva vitesse course à pied échelle équation équation second dedré plus d'outils...
Questions

- Poser une Question

- Questions Résolues

- Problèmes à résoudre

Les QCM

- QCM verbes anglais

- QCM verbes allemand

- QCM calcul littéral

- QCM équation

- QCM fraction

- QCM nombre relatif

Pour vous aider :

- Rechercher une page

- Contact

- À propos