Calculis

Calcul Moyenne Géométrique

Rechercher un outil (en entrant un mot clé):

autres outils de statistique : moyenne simple (moyenne de notes) - moyenne pondérée (moyenne de notes avec coefficients) - moyenne géométrique - moyenne harmonique - variance - covariance - écart type - médiane - droite de régression linéaire

Calculer la moyenne géométrique G

La moyenne géométrique pondérée d'une série de n valeurs x1, x2, ... , xn dont les poids respectifs (ou coefficients) est la suite de nombres suivante : p1, p2, ... ,pn , est donée par la formule :

moyenne geometrique ponderee ou encore moyenne geometrique

Si tous les poids sont égaux, alors la formule devient :

moyenne geometrique simple

exemple : 1,30; 1,50; 0,90

exemple 3; 2; 7

tous les poids sont identiques

 

 

 

Exemple de l'utilisation de la moyenne géométrique :

Moyenne de rendements

Imaginons un portefeuille d'actions de 10 000 €, dont le rendement est de 50% la première année, et puis baisse de 6% chaque année.

Quel est le rendement moyen mensuel ?

Les rendements sont égaux respectivement à 1,50 ; 1,44 ; 1,38 ; 1,32 ; 1,26 ; 1,20 ; 1,14 ; 1,08 ; 1,02 ; 0,96 . La moyenne arithmétique des rendements est égale à : 1,23. De là, nous pourrions hypothétiquement spéculer sur la valeur à 10 ans de ce portefeuille et nous donnerions comme réponse 10 000 × 1,2310 = 79 259,46€.

Alors que si nous calculons sa valeur année après année, le résultat final est de : 71 723,02€

Détails des calculs :

10000 × 1,50 = 15000 ; 15000 × 1,44 = 21600 ; 21600 × 1,38 = 29808 ; 29808 × 1,32 = 39346,56 ; 39346,56 × 1,26 = 49576,66 ; 49576,66 × 1,20 = 59491,99 ; 59491,99 × 1,14 = 67820,87 ; 67820,87 × 1,08 = 73246,54 ; 73246,54 × 1,02 = 74711,47 ; 74711,47 × 0,96 = 71723,02

(les résultats sont donnés tronqués à 10-2).

La moyenne arithmétique des rendements mène donc à un résultat faux.

Que nous donne la moyenne géométrique ?

Renseignons l'outil avec la série des rendements (1,50 ; 1,44 ; 1,38 ; 1,32 ; 1,26 ; 1,20 ; 1,14 ; 1,08 ; 1,02 ; 0,96), ici les poids sont identiques.

L'outil nous donne comme moyenne géométrique 1,2177716438104. Appliquons cette moyenne : 10 000 × 1,217771643810410 = 71 723,02€.

C'est donc la moyenne géométrique qu'il faut utiliser si l'on souhaite calculer une moyenne de rendements.

Exemple par défaut du calculateur :

Supposons que la valeur d'une action progresse de 30% chaque mois pendant 3 mois, de 50% pendant 2 mois et perd 10% chaque pendant le reste de l'année. Quel est son rendement moyen par mois ?

(3+2+7)√(1,303×1,502×0,907)

= 12√2,364341150925

= 1,0743418949117.

La moyenne géométrique des 3 valeurs pondérées de leurs nombres de mois respectifs est égale à : 1,0743418949117.

On peut dire que l'action a eu un rendement moyen de 7,43% par mois au cours de l'année.

Outils du moment
Dosage Béton Pneu été Quotient Familial béton tout prêt CoVoiturage Emprunter Coût au km Moyenne Nombre de parpaing Coût trajet Taux Variation Impôt 2020 Pourcentage TaXe Emprunt Jours Fériés 2020 vitesse course à pied Calcul Heure Echelle CO2 Mensualité

Dosage Béton

Dosage Béton
D'autres Outils
brut net coût carburant béton calcul aire escalier masse molaire moyenne pondérée calcul volume chômage consommation carburant mensualité et TEG conversion unités cuve fioul Fioul escalier hypoténuse Chauffage Bois nombre de jours pente pneu pourcentage puissance radiateur résistance thermique tva échelle équation équation second dedré plus d'outils...
Questions

- Poser une Question

- Questions Résolues

- Problèmes à résoudre

Les QCM

- QCM verbes anglais

- QCM verbes allemand

- QCM calcul littéral

- QCM équation

- QCM fraction

- QCM nombre relatif

Pour vous aider :

- Rechercher une page

- Contact

- À propos